Structured Prediction of Network Response
نویسندگان
چکیده
We introduce the network response problem (Su et al. 2014): given a network G = (V,E) and an action a, predict the subnetworkGa = (Va, Ea) that responses to the action, that is, which nodes v ∈ Va perform the action, and which directed edges e = (v, u) ∈ Ea relay the action from v to an adjacency node u. We assume that G is directed, and any undirected network can be seen as a special case. We assume each action a is represented by a feature map φ(a) (e.g., bag-ofwords). We use output feature map ψ(Ga) (e.g., vector of edges and labels) to encode the response graph Ga. Our model is based on embedding a and Ga into a joint feature space and learn from on that space a compatibility score function
منابع مشابه
Prediction of Patient’s Response to Cognitive-Behavior Therapy by Artificial Neural Network
Objective: Social anxiety disorder (SAD) is defined as a constant fear of being embarrassed or negatively evaluated in social situations or while doing activities in the presence of others. Several studies have examined the role of certain variables that might predict response to treatment and may affect treatment outcome. The purpose of this study was to identify predictive variables of change...
متن کامل The Quantification of Uncertainties in Production Prediction Using Integrated Statistical and Neural Network Approaches: An Iranian Gas Field Case Study
Uncertainty in production prediction has been subject to numerous investigations. Geological and reservoir engineering data comprise a huge number of data entries to the simulation models. Thus, uncertainty of these data can largely affect the reliability of the simulation model. Due to these reasons, it is worthy to present the desired quantity with a probability distribution instead of a sing...
متن کاملIn-silico prediction of Cellular Responses to Polymeric Biomaterials from Their Molecular Descriptors
In this work quantitative structure activity relationship (QSAR) methodology was applied for modeling and prediction of cellular response to polymers that have been designed for tissue engineering. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regressions (MLR) and artificial neural network (ANN) methods. The root m...
متن کاملMixture of Xylose and Glucose Affects Xylitol Production by Pichia guilliermondii: Model Prediction Using Artificial Neural Network
Production of several yeast products occur in presence of mixtures of monosaccharides. To study effect of xylose and glucose mixtures with system aeration and nitrogen source as the other two operative variables on xylitol production by Pichia guilliermondii, the present work was defined. Artificial Neural Network (ANN) strategy was used to athematically show interplay between these three c...
متن کاملComparison of artificial neural network with logistic regression in prediction of tendency to surgical intervention in nurses
Introduction: Logistic regression is one of the modeling methods for bipartite dependent variables. On the other hand, artificial neural network is a flexible method with the least limitation. The importance of growing unnecessary beauty surgeries and the importance of prediction and classification made us consider the present study, with the aim of comparing logistic regression and artificial ...
متن کاملApplication of Response Surface Methodology and Artificial Neural Network for Analysis of p-chlorophenol Biosorption by Dried Activated Sludge
Phenolic compounds are considered as priority pollutants because of their high toxicity at low concentration. In the present study, the sorption of p-chlorophenol (p-CP) by dried activated sludge was investigated. Activated sludge was collected as slurry from the sludge return line of a municipal wastewater treatment plant. Sorption experiments were carried out in batch mode. In order to invest...
متن کامل